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Abstract 
To ensure flexibility and convenience of working with geometric models in CAD systems, 

algorithms for converting geometric representations are demanded, among which methods of 
their one-to-one and exact transformation are of great importance. In this paper, we propose 
a technique for converting a spline curve into a corresponding equivalent B-spline curve 
based on combining Bezier segments and the removal of multiple knots to obtain a more 
compact B-spline representation. The justification of the simplified version of the knot-
removal algorithm for B-splines is given. This approach makes it possible to construct a B-
spline curve based on information about its individual points without using standard fitting 
tools and complex interpolation schemes. 

Keywords: geometric modeling, parametric curves, CAD, cubic splines, B-spline curves, 
NURBS, Bezier curves.  

 

1. Introduction 
An important stage in the design of industrial facilities is the creation of their geometric 

model, which is usually carried out using specialized software - CAD systems. The underlying 
part of the CAD system is the geometric core, which allows you to work with various types of 
curves and surfaces to create two-dimensional and three-dimensional geometric models. The 
geometric model of an object is usually represented by a hierarchical boundary description 
(B-rep) [1] considering a geometric object as a set of faces with common boundaries as edges. 
Various parametric descriptions of curves and surfaces are used to define curved geometry 
[2-5]. The efficiency of CAD systems depends on the geometric core algorithms for working 
with various geometric shapes such as splines. A detailed overview and classification of 
splines are given in [6], however, analysis of all methods and possibilities of transformation 
between different models is beyond the scope of this article. In this paper, we consider the 
cubic splines of defect 1 and B-splines and propose a technique for converting spline curves 
into B-spline form without using special methods of B-splines fitting. We discuss the 
conditions under which such transformation becomes possible. 

One of the best ways to produce a mathematical description of curves that provides a 
good mechanism of shape control is to use rational B-splines or NURBS [2,4,5]. B-splines are 
the industry standard for representing composite curves. Like Bezier curves, B-splines are 
defined by a weighted sum of control points, but, at the same time, they provide local control 
of curve shape. NURBS (Non-uniform rational B-spline) are a universal mathematical 
description of various types of curves and surfaces such as straight lines, planes, conic 
sections [7,8], quadrics, surfaces of rotation [9] and other geometric shapes. Besides, NURBS 
representation is used in the universal STEP format for data exchange between CAD systems. 
Thus, NURBS is one of the popular methods of description of parametric curves and surfaces, 
which is widely used in modern CAD systems, due to its versatility and ease of use. On the 
one hand, NURBS makes it possible to describe complex curves consisting of many 
parametric segments. On the other hand, the NURBS defining polygon allows controlling the 
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shape of the curve, but does not explicitly define the points of this curve, determining only the 
direction of its bend. In this paper, we consider B-splines that are equivalent to NURBS with 
unit weights. In general, a B-spline curve may not interpolate any of the specified control 
points of the defining polygon.  Low-order spline polynomials such as cubic splines of defect 1 
are usually used when it comes to interpolation of given points. Similarly to physical splines, 
a series of cubic segments is used to construct a mathematical spline, each of which 
interpolates the endpoints. A cubic spline is defined by points, tangent vectors, and 
parameter values at the ends of segments, that is, unlike NURBS, explicitly uses additional 
information about derivatives at the endpoints. 

In general, for an unknown original curve, the B-spline fitting problem is solved using 
more complex algorithms. To interpolate a set of points [10], line segments [11] and to 
construct transition curves [12] algorithms for solving linear system of equations [13] and 
different iteration schemes [14] can be used. In [15], an interpolation scheme with fitting of 
transition curves represented by a pair of Bezier segments is considered. 

The goal of the work is to find an effective algorithm for one-to-one and accurate 
transformation of a curve defined in the form of a cubic spline into the corresponding 
representation in the form of a B-spline. In this paper, we consider a technique for converting 
a cubic spline of defect 1 into a B-spline based on combining Bezier segments, followed by 
obtaining a more compact B-spline description by removing single knots. In this formulation 
of the problem, a transformation of the curve to B-spline form can be done with linear time 
complexity, while fitting algorithms based on matrix multiplications [16,17], inversions 
[18,19], as well as solutions of linear systems [20], have at least quadratic time complexity. 
The B-spline knot removal algorithm is the reverse of the knot insertion algorithm. There are 
several variants of the knot insertion algorithms. Insertion of several knots can be 
implemented using the Oslo algorithm [21,22], insertion of a single knot – using Boehm’s 
algorithm [23]. A modification of the Boehm algorithm for inserting multiple knots is 
considered in [24]. In this paper, knot removal is used to obtain an equivalent B-spline form 
with fewer vertices in the defining polygon. As an algorithm for knot removal, in general, any 
of the options under consideration can be used. In this paper, the rationale for the B-spline 
knot insertion algorithm is given and a simplified version of the knot removal algorithm is 
used to obtain the most compact B-spline representation of the original spline curve. 

Unlike B-spline fitting based algorithms, which allow approximating a set of vertices with 
a predetermined accuracy, the proposed algorithm for the transition from splines to B-splines 
allows equivalent transformations, that is, converting a given curve in the form of a composite 
cubic spline to a fully equivalent B-spline representation. The same object is known to be 
represented using different B-spline forms. At the first stage of the algorithm, the 
identification of a B-spline form with multiple knots is performed, which exactly corresponds 
to a given spline curve. At the second stage, the resulting B-spline form is optimized by 
removing multiple knots, which corresponds to a more compact B-spline description with 
fewer control points. 

The article consists of several sections. Section 2 provides a theoretical background on 
cubic splines with defect 1 and B-splines defined by recursive Cox-deBoor formulas, and also 
discuss the conditions for equivalence of cubic splines to Bezier segments. Section 3 provides 
a detailed description of the transform algorithm from a composite cubic spline to a B-spline 
form, and section 4 discusses knot insertion and a simplified algorithm for a single knot 
removal to obtain an equivalent B-spline form with fewer knots. Information about the 
existing software implementation of this technique is given in section 5. An example with the 
result of the algorithm is discussed in section 6, followed by a conclusion. 

2. Properties of cubic spline and B-spline curves 
In recent years, various forms of curves and surfaces have been proposed to describe 

geometric shapes. Among them, cubic splines and B-splines are of particular importance. 



According to [2], cubic splines are curves of the smallest degree that admit inflection 
points and bending in space. Consider the interpolation cubic splines of defect 1 (the 
difference between the degree and smoothness of the spline), consisting of identical 
segments, each of which passes through two points. In this case, a cubic spline curve can be 
described by a polynomial of the 3rd degree with a continuous second derivative at the 
junction points of segments: 
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where Bji are he control points of the i-th spline segment, which are determined by the known 
coordinates of the points Pi and Pi+1, the tangent vectors Pi' and Pi+1' and the values of the 
parameter ti and ti+1 at the ends of the i-th segment as follows: 
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By simple transformations, a cubic spline segment can be represented in the equivalent to 
(2) matrix form: 
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B-spline is an industry standard and is used to describe complex curves and surfaces in 
most modern CAD systems, due to the following properties: 

• B-spline is a composite parametric curve that allows avoiding undesirable oscillations 
characteristic of high-degree interpolation polynomials when approximating a set of 
points. 

• The B-spline is defined by vertices of the defining polygon which is convenient for 
controlling the shape of the curve. There is no need to recalculate the entire curve due 
to a local change of a knot vector. 

• A B-spline curve of degree p lies inside the union of all convex hulls of p+1 consecutive 
vertices of the defining polygon. 

• Any affine and projective transformations can be applied to the curves by applying 
such transformations to the defining polygon vertices. 

• Rational B-splines (NURBS) allow us to describe a fairly wide range of curves such as 
Bezier curves and conic sections. 

The listed features of B-spline curves are determined by the properties of the B-spline basis. 
Let T = (t0,…,tr) be a non-decreasing sequence of real numbers. Let us call T a knot vector 

and the numbers ti  – knots. Let us denote the ( ),i pN t  i-th normalized basis function of degree 

p and define it as follows (Cox-deBoor formulas): 
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The values ti are the elements of the knot vector satisfying the inequality t0 ≤ ti ≤ ti+1 ≤ tr. Most 
often, clamped knot vectors are considered for which first and last knot values are repeated 
with multiplicity equal to basis function degree p plus one. Setting p+1 multiplicity at the 



ends of the knot vector avoids reducing the range of the parameter t, characteristic of B-
splines with unclamped uniform knot vectors [5], and interpolating the endpoints of the 
defining polygon. 

Note the following properties of the B-spline basis: 
1. Ni,p(t) = 0 for values of t outside the interval [ti, ti+p+1). 
2. For t ϵ [ti, ti+1) no more than p+1 basis functions take non-zero values, namely        

Ni−p,p(t), . . . ,Ni,p(t). 

3. The basis functions are non-negative, i.e. Ni,p(t) ≥ 0  i, p, t. 

4. ( ), 1
i

j p

j i p

N t
= −
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5. The derivatives of order 1,2,…,p are all continuous for Ni,p(t) over the knot interval        
(ti, ti+1). The derivatives 1,2,…,p–q  are all continuous for Ni,p(t) in a knot where q is the 
multiplicity of the knot to be considered. 

6. Ni,p(t) has exactly one maximum (except p = 0). 
Properties 1 and 2 show that the B-spline basis is local, since the functions Ni,p(t) differ 

from zero only in a certain interval, that is, they have a compact support. The multiplicity of 
knot values allows you to locally control the degree of smoothness of the curve. In general, 
according to the property 5 of basis functions, Cp-q differentiability of the curve is maintained 
when q multiple knots occur. Accordingly, setting p knots inside the knot vector allows 
interpolating the selected points of B-spline curve maintaining its continuity. Fig. 1 shows an 
example of the basis functions of a B-spline curve in case of presence (a) and absence (b) of 
multiple knot values. The basis functions corresponding to the interpolated points of the 
curve are marked on the graphs with bold lines.  

 

  
Figure 1. The example of B-spline curve basis functions: 
(a) the knot vector (0.1,0.1,0.1,0.1,0.2,0.2,0.2,0.3,0.3,0.3,0.73,0.73,0.73,1,1,1,1), 
(b) the knot vector (0.1, 0.1, 0.1, 0.1, 0.2, 0.3, 0.73, 1, 1, 1, 1). 

 
To define a curve of degree p on a set of knots T it is necessary to specify a defining 

polygon (B0, …, Bn). Each vertex Bi of the defining polygon corresponds to a basis function  

( ),i pN t . A point of B-spline curve is calculated from the value of the parameter t as follows: 
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According to property 2 of the B-spline basis 
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Each segment of the B-spline curve corresponds to a non-degenerate interval 1i it t t +   and is 

defined by p+1 vertices of the defining polygon. The number of segments of a composite B-



spline curve in the absence of multiple knots inside the knot vector can be obtained as 
follows: 

1 1n ns p ns n p+ = +  = − + ,  

where n+1  is the number of control points of the defining polygon. In the presence of 
multiple knot values, some of these segments can be interpreted as degenerate.  

A clamped knot vector defines the parameters of the segments of a composite B-spline 
curve, and the number of its elements is 
nk = ns − 1 + 2 · ( p + 1 ) = n + p + 2, то есть r = n + p + 1.  
Setting multiple knots inside the knot vector allows you to locally reduce the degree of 
smoothness of B-spline curve. In case of a B-spline curve of the third degree a pair of multiple 
knot values makes it possible to interpolate individual control points of the defining polygon 
(Figure 1a) that coincide with the points of the curve. This property is the basis of the 
transformation technique of a spline curve into a B-spline form, discussed in section 3 of this 
paper. 

Consider a cubic B-spline segment with a clamped knot vector of the form         
T1=(ti,ti,ti,ti, ti+1,ti+1,ti+1,ti+1). In this case, the B-spline curve is equivalent to the Bezier curve, 
and the B-spline basis is equivalent to the Bernstein basis [2], which can be, in general, 
proved by induction on the degree of the polynomial. The cubic Bezier segment 
corresponding to the knot vector T1 can be calculated from p+1=4 control points as follows: 
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For ( ) 0 i i i it t P t B= = , for ( )1 1 3 i i i it t P t B+ += = .  

By differentiating by the parameter t we obtain 
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that is, the control points Bi1 and Bi2 can be calculated based on information about the 
endpoints Bi0 and Bi3 and the derivatives Pi' and Pi+1' at the endpoints, which corresponds to 
similar formulas for derivatives at the endpoints of NURBS curves with a clamped knot vector 
[5]. 

Let us show that representations (1), (2) are equivalent to (5). For the sake of simplicity, 
we consider a special case of cubic segments for the standard range of parameters 0 ≤ t ≤ 1. In 
this case, according to formulas (1) and (2), the spline curve can be described as follows: 
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The equation defining the Bezier segment according to (5) for 0 ≤ t ≤ 1 can be rewritten as 
follows: 
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Using expressions (6), (7) for the boundary derivatives of the Bezier segment and 
equating the coefficients at the same degrees, we obtain 
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Thus, for this case Bezier segments are equivalent to the cubic splines of defect 1 defined 
by formulas (1) and (2). 

3. Problem statement. The technique of converting a 
spline curve into a B-spline 

Let the original spline curve consist of ns segments and (t0, t1,…, tns) is a vector of 
parameters;   P0, P1,…, Pns and  P0', P1',…, Pns' are the set of points and tangent vectors at the 
ends of segments. Our goal is to transform a spline curve defined as a set of segments into a 
B-spline form. To achieve this goal we produce a Bezier segment for each segment of the 
spline curve. The entire set of Bezier segments is transformed into a B-spline curve by means 
of the interpolation of the endpoints by adding multiples knot values, that is: 

1. For each spline segment i , the Bezier segment is calculated using the formulas:  

0 ,i iB P= ( )( )1 0 11/ 3 'i i i i iB B t t P+= + − , ( )( )2 1 1 11/ 3 'i i i i iB P t t P+ + += − − , 
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2. Let Bij be a control point with the number j corresponding to a segment i. Assuming 
that B00=P0, B03=B10=P1, B13=B20=P2, …, Bi3=Bi+1,0=Pi, …, Bns-2,3=Bns-1,0=Pns-1, Bns-1,3=Pns; 
we produce the defining polygon of B-spline in the following form:           
(B00,B01,B02,B03,B11,B12,B13,…Bns-1,1,Bns-1,2,Bns-1,3), n=p·ns, where n+1 is the number of 
control points of the defining polygon. 

3. To interpolate the endpoints B03, B13, …, Bns-2,3, Bns-1,3 we set the clamped knot vector 
with multiple knot values in the following form:  
(t0, t0, t0, t0, t1, t1, t1, t2, t2, t2, … , tns-1, tns-1, tns-1, tns, tns, tns, tns), nk=p·(ns+1)+2. 

Thus, the original spline curve can be transformed into B-splines with multiple knot 
values. The computational complexity of such a transformation is O(ns). The resulting B-
spline interpolates a subset of the control points corresponding to the set of points                             
P0, P1,…, Pns of a multi-segment spline curve. The task set in this way can be considered to be 
solved, but the resulting representation of the curve in the B-spline form is redundant in 
terms of the number of segments and can be simplified by converting it into a more compact 
representation containing fewer control points and fewer knots, respectively. The 
corresponding transformation can be done using the knot removal algorithm, which is 
discussed below. 

4. Algorithms for single knot insertion and removal 
Algorithms for knot insertion and removal are reviewed in [5,12]. A proof of the single 

knot insertion algorithm alternative to [5] is given below. 
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number of elements of the node vector is a function of the sum of the number of control 
points and the degree of the curve, therefore, with the degree unchanged, the number of 

control points after a single knot insertion increases by one. If at the same time ( ( )2
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It can be shown that the basis functions of the original curve can be expressed in terms of 
the basis functions of the transformed curve as follows: 
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The idea of the proof of (12) is given in [5], a proof for non-normalized B-splines is given 
in [12], divided differences based proof is given in [21]. A simpler proof of formula (12) is 
given below. It is easy to see the relation between this formula and the Cox-de Boor formula 
(3): 
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Formula (12) can be proved based on formulas (3) and (13) by induction on p and taking into 
account (8). For an inductive step, we obtain: 
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The relation between ( )1

jB  and ( )2

jB for j=i–p, …, i can be obtained by substituting (12) into 
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Considering that 1it t+ =  and using the knot vector ( )1
T  instead of  ( )2

T  we obtain 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

2 1 2 1 1 11
, 1 1 1,

1 1 1 1

2 1 1 2 1
1,1 1, 1

0

.

i pi
i p pi p i p i p i p i p i p p

i i p i i p

i p i
i pi i i i p p i i

i p i i p i

t tt t
B B N B B B N

t t t t

t t t t
B B B N B B N

t t t t

− ++
−− − − + − − + − +

+ − + + − +

+
+− − + +

+ +

 −−
= − + − − + +  − − 

 − −
+ − − + −  − − 

 

If we set ( ) ( )/j j j p jt t t t += − −  for j=i–p+1, …, i, the coordinates of the new vertices           

( ( )2

0B ,…, ( )2

1nB + ) can be expressed in terms of the original defining polygon vertices ( ( )1

0B ,…, ( )1

nB ): 
( ) ( )2 1

i p i pB B− −=  

( ) ( ) ( ) ( ) ( )2 1 1 1 1

1 1(1 )
j p j

j j j j j j j

j p j j p j

t t t t
B B B B B

t t t t
 

+

− −

+ +

− −
= + = − +

− −
 for j=i–p+1, …, i. 

(14) 



( ) ( )2 1

1 .i iB B+ =  

By rewriting formulas (14) in reverse order and taking into account (9) and (10), we obtain 
formulas for a single knot removal: 

( ) ( )1 2

j jB B=  for j=0, …, i – p, 

𝐵𝑗
(1)

= {
(𝐵𝑗

(2)
− (1 − 𝛼𝑗)𝐵𝑗−1

(1)
)/𝛼𝑗, if 𝛼𝑗 > 0

𝐵𝑗+1
(2)

, if 𝛼𝑗 = 0
   for j=i–p+1, …, i. 

( ) ( )1 2

1j jB B +=  for j=i+1, …, n. 

 

 

In this problem statement, the presented knot removal algorithm can be applied twice for 
each knot of double multiplicity in order to obtain a more compact B-spline description. Each 
knot removal operation reduces the number of control points by one without changing the 
number of B-spline segments making it possible to suggest an algorithm for transformation 
to an equivalent B-spline representation in linear time, that is, it has computational 
complexity О(ns) where ns is the number of segments of the original curve in the form of a 
cubic spline. 

This algorithm does not check the possibility of knot removal despite the fact that, in 
general, according to the property 5 of basis functions, the B-spline curve has a discontinuous 
first derivative at points of triple multiplicity of the knot value. However, the possibility of 
double knot removal is justified by the fact that the original cubic spline of defect 1 has the 
continuous second derivative at the points of internal junction. This makes it possible to 
abandon the more complex knot removal algorithm discussed in [5]. In general, the 
technique of converting the cubic spline of defect 1 into a B-spline form can be implemented 
as an algorithm with computational complexity O(ns). 

5. Software implementation 
The technique of converting a spline curve into a B-spline form is implemented as a C++ 

software package. Algorithms for iterative calculation of spline and B-spline curves, 
algorithms for combining Bezier segments and removing B-spline knots, as well as a general 
algorithmic implementation of the transformation and optimization procedures for B-spline 
curves, are implemented as separate functions and software modules. Visualization of curves 
and basis functions of B-splines is implemented in the form of GNU Octave scientific 
programming language scripts. The listed software components are freely available at 
https://github.com/am0606/bsplfit. 

6. An example of how algorithms work 
Consider the spline curve in the Figure 2a, with the control points and tangent vectors 

shown in the Table 1.  
Table 1. Control points and tangent vectors of the spline curve 

Control points Tangent vectors 
(1, 1) (60, 60) 
(3.90873, 2.4881) (12.2619, -0.357143) 
(4.91607, 3.31514) (8.43441, 10.8827) 
(7.24717, 5.63957)   (4.07908, 9.08418) 
(10, 6) (22.2222, -22.2222) 

The curve is defined by 5 control points and tangent vectors, that is, it consists of 4 
segments. The knot vector is the following: (0.1, 0.2, 0.3, 0.73, 1). 

Transformation of a composite spline curve in the Figure 2a into a B-spline form based 
on the combining of Bezier segments gives the following description of the B-spline curve: 

• Knot vector (17 knot values):  



(0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.73, 0.73, 0.73, 1, 1, 1, 1). 

• Control points (13 points, n=12): (1, 1), (3, 3), (3.5, 2.5), (3.90873, 2.4881), (4.31746, 
2.4762), (4.63492,2.95238), (4.91607,3.31514), (6.125,4.87499), (6.6625,4.3375), 
(7.24717, 5.63957), (7.61429, 6.45715), (8, 8), (10, 6). 

Removing multiple knots at the endpoints of Bezier segments allows us to obtain 
the following description of the B-spline curve (Figure 2b): 

• Knot vector (11 knot values): (0.1, 0.1, 0.1, 0.1, 0.2, 0.3, 0.73, 1, 1, 1, 1). 

• Control points (7 points, n=6): (1,1),(3,3),(4,2),(6,5),(7,4),(8,8),(10,6). 
B-spline curve in  Figure 2a corresponds to the basis functions set in  Figure 1a and B-

spline curve in  Figure 2b corresponds to the basis functions set in  Figure 1b. 
 

  
Figure 2. Example of a curve represented by a cubic spline and a B-spline: 
(а) A composite spline curve and the corresponding B-spline composed by a set of Bezier 
segments. Bold dots indicate the endpoints of the spline segments, arrows indicate the 
directions of tangents along the boundaries of these segments, a polyline is the defining 
polygon of the B-spline. 
(b) Optimal B-spline form. The result obtained by the procedure for removing multiple knots. 

 
Thus, combining Bezier segments equivalent to spline segments makes it possible to 

obtain a B-spline curve with multiple knots, which can be simplified later using the 
considered knot removal algorithm. This algorithm is applied 6 times and reduces the 
number of control points of the B-spline from 13 to 7 by removing degenerate segments. 

7. Conclusion 
In this paper, we consider the relationship between the representations of curves in the 

form of cubic splines of defect 1 and B-splines, which can be used to describe the same curve. 
The representation of the curve as a set of spline segments allows you to interpolate a set of 
predefined control points, but requires additional information about the derivatives at the 
segment endpoints. In turn, B-spline curves do not require explicit assignment of derivatives, 
but, in general, do not interpolate the control points of the defining polygon. At the same 
time, B-spline is an industry standard convenient for data exchange between different CAD 
systems, which makes the problem of B-spline fitting to a given set of points as well as 
converting alternative representations of curves into the B-spline form, important. Such a 
problem can be efficiently solved for curves defined by cubic splines of defect 1. 

Knot insertion allows you to represent the same curve by means of different B-spline 
descriptions. In this paper, an alternative justification of the algorithms of B-spline knot 
insertion and removal is given, as well as the conditions for equivalence of cubic splines to 
third degree Bezier segments. B-spline curves can be composed of individual Bezier 
segments, and a spline consisting of many segments can be represented as an equivalent B-
spline description with multiple knots, which allows you to interpolate the selected vertices. 



The B-spline obtained in this way can be transformed into a more compact form using an 
algorithm for single knot removal. This representation is optimal and fully corresponds to the 
original description of the curve in the cubic spline form. The knot removal algorithm can 
also be simplified by taking into account the properties of cubic splines of defect 1. 

Thus, in this paper, we propose an original method of B-spline curve construction based 
on initial representation of this curve in the form of a cubic spline of defect 1 consisting of a 
set of segments and implement such technique as an algorithm. The described algorithm 
makes it possible to transform a spline curve into a B-spline form exactly corresponding to it. 
Such method is an alternative to algorithms for fitting B-spline curves and applying complex 
interpolation schemes. The algorithm can be implemented as a software module of the 
geometric core of a CAD system. 
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